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Summary. For two-electron atoms, the method of a variable exponent, which 
treats the orbital exponent (or effective nuclear charge) of an electron as an 
explicit function of the radial coordinate of the other electron, is studied. The 
method is shown to improve the energy and other electronic properties remark- 
ably. An incorporation of the variable exponent into the Kellner approximation 
for He, for example, gives the energy -2.872 606 1 a.u., which is lower than the 
original Kellner energy by 0.024 949 8 a.u. and exceeds the Hartree-Fock limit 
energy by 0.010926 1 a.u. The improvement due to the variable exponent 
originates from the inclusion of the charge and radial correlations. Applications 
of the method to the Eckart and Hylleraas approximations are also presented. 

Key words: Variable exponent- Electron correlation- Helium and helium-like 
atoms 

1. Introduction 

In the fixed-nucleus approximation, helium and helium-like atoms can be treated 
as a two-body problem in the external Coulombic field due to the point nuclear 
charge + Z. Nevertheless, exact analytic solution of the Schrrdinger equation is 
not possible due to the interelectronic repulsion term, 1/r12, in the Hamiltonian. 
Various approximate solutions have been hitherto studied, some of which attach 
importance to a clear physical picture of the system and some to a quantitative 
description of properties such as the electronic energy and other spectroscopic 
constants. 

The simplest approximation is the pure independent-particle model which 
completely neglects the electron repulsion term in the Hamiltonian. The quanti- 
tative utility of this model is very limited. The Hartree-Fock method retains 
some of the simple features of the pure independent-particle model and yet 
introduces the electron interaction in a well-defined fashion. This method has the 
physical interpretation that each electron in the system moves in a potential field 
which is an average of that provided by the remaining electrons. Because of this 
simplicity, however, the Hartree-Fock method cannot describe the correlated 
motion of electrons (which is sometimes referred to as the Coulomb correlation 
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[1]): Due to their mutual repulsion, any pair of electrons tends to be somewhat 
further apart than the Hart ree-Fock wave function indicates. 

In the case of atoms, Pilar classified the electron correlation into three types 
[2]: (i) charge correlation, which refers to the screening effect of an inner electron 
upon outer electrons; (ii) radial correlation, which refers to the situation where 
one electron is close to the nucleus so the others tend to be farther away; and (iii) 
angular correlation, which refers to the tendency of two electrons to be on 
opposite sides of the nucleus. Pilar also discussed [2] how the charge correlation 
can be largely accounted for by scaling or self-consistent-field procedures. This 
may result in the adjustment of the effective nuclear charge or the average 
potential field. 

In the present paper, we study the role of the effective nuclear charge (or 
orbital exponent) on the electron correlation in the two-electron atoms. We make 
the exponent of an electron an explicit function of the radial coordinate of the 
remaining electron. The procedure is referred to as the method of a variable 
exponent, and ois applied to three well-known simple wave functions. 

Kellner function [3]: 

~(rl ,  rE) ---- exp[ -- ((r 1 d- rE)], ( la)  

Eckart function [4-6]: 

~(rl ,  rE) = exp( --~trl -- firE) + e x p ( -  fir 1 -- ~trE), (lb) 

Hylleraas function [7]: 

T(rl, rE) = (1 + •rlE) exp[--7(r, + rE)l, (lc) 

where = Ir, I and rl2 = ]rl--rE]. These three approximate wave functions are 
considered to include the charge, radial, and angular correlations, respectively, in 
the simplest manner. (, a, r ,  ~, and 7 are variational parameters in the standard 
treatment, but, except for r,  they are assumed to be functions of the radius of an 
electron coordinate in this work. In the next section, the method of a variable 
exponent is presented for the Kellner function. The energy and other electronic 
properties are shown to be surprisingly improved; the energy of Eq. (la) with a 
variable exponent exceeds the Hart ree-Fock limit value and compares with the 
Eckart energy with constant exponents. The fact that the method of variable 
exponent accounts for both the charge and radial correlations is discussed. The 
same procedure is applied in Sect. 3 for the Eckart and Hylleraas functions. The 
energy lowering is found to be smaller than for the Kellner function, but the 
improvement is still meaningful. Atomic units are used throughout this paper. 

2. The Keliner function with a variable exponent 

The introduction of a variable exponent modifies the original Kellner function 
[Eq. (la)] to 

7J(rl, rE) = exp[--~(rE)rl] exp[--~(rl)rE] --= F(r l ,  rE), (2) 

where the exponent (or effective nuclear charge) ~ for an electron is treated as an 
explicit function of the radial coordinate of the other electron. An analogous 
concept can be found in the distinguishable electron model [8] and in the 
perturbative treatment [9] of excited states. Our method is, however, essentially 
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different from that of ten Hoor [10] who studied the effective nuclear charge of 
an electron as a function of its own radial coordinate. 

The determination of an optimum functional form for ((r) is a variation 
problem. The energy expectation value E associated with the wave function (2) 
is given by 

E[(] = ( T  + U + W ) / S ,  (3a) 

where 

T =  --(1/2)<Al + A 2 )  

fo fo = (4re) 2 dr 1 r21 dr2r2[((r2) + r 2 d((rl)/drl]2[F(rl,  r2)] 2, (3b) 

U =  - Z ( 1 / r ,  + l/r2> 

=- - - 2 Z ( 4 g )  2 d r l r  I dr2r~[F(rl, r2)l 2, (3c) 

W = --<l/r12> 

= (4~) 2 drlrl drEr~[F(rl, r2)] 2 

+ (4~) 2 drlr~ drErE[F(rl, r2)] 2, (3d) 
1 

S=<l> 

;0 ~ (4 '~)  2 d r l r l  2 drEr~[F(rl, r2)] 2. ( 3 e )  

To optimize ((r) analytically from the energy functional E[~] does not seem easy. 
Therefore, we assume some function with adjustable parameters a, b, c . . . .  for 
((r). Then the problem reduces to the optimization of the parameters with 
respect to the energy E[~ = E(a, b, c . . . .  ). 

For a given ~(r; a, b, c . . . .  ), we have evaluated all the integrals appearing in 
Eq. (3) numerically using the Romberg method [11]. To facilitate convergence, 
an exponential transformation of the variable r, r = exp(x), has been introduced 
and the integral region [0, oo) has been approximated by [e-16, e+4]. This 
approximation has been shown to reproduce all the original results of the 
Kellner treatment. The Powell method of conjugate directions [12] has been 
employed in the search for optimum parameters. 

We have examined various functions for ((r) based on a trial and error 
procedure where the number of parameters is limited to less than six for the 
computational reason. Several ~(r) functions, which give a remarkable lowering 
in the energy, are summarized in Table 1. The best result in our present study is 
obtained by the function 

((r) = a + ln(b + cr + dr z) exp(-er) .  (4) 

For the helium atom, this function results the energy -2.872 606 1, which is 
lower than the Kellner energy ( -2 .847  656 3) by 0.024949 8 and exceeds the 
Har t ree-Fock limit energy [13, 14] ( -2 .861 680 0) by 0.010 926 1. This compari- 
son clearly shows that a variable exponent method introduces an electron 
correlation effect. The energy improvement resulting from the variation of 
exponent is quite noticeable. 
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Table 1. Some ((r) functions for He which give significant improvement for the Kellner 
wave function 

Functional form of  ~(r) Optimum parameters Energy 

a (=constant )  a = 1.6875 
a + br c tanh(dr  e) a = 1.3839, 

d = 0.6339, 
a + br c ln(1 + dr e) a = 1.3856, 

d = 0.3195, 
a + br c arctan(dr0 a = 1.3867, 

d = 3.5515, 
(a + brC)/(1 + dr e) a = 1.3944, 

d = 0.1720, 
a + br ~ e x p ( - d r  e) a = 1.3916, 

d = 0.3596, 
( a + b r  + c r 2 ) / ( l  + d r  + e r  2) a =  

d =  
a + (b + cr + dr2) e x p ( - e r )  a =  

d =  
a + ln(b + cr + dr 2) e x p ( - e r )  a = 

d =  

b = 0.3830 c = -0.6653, 
e = 1.5036 
b = 0.7681 c = -2.0482, 
e = 2.9136 
b = 0.1633 c = 0.9003, 
e = - 1.9498 
b = 0.4777 c = 1.2070, 
e = 1.6590 
b = 0.2952 c = 1.0309, 
e -- 1.4547 

1.3902, b = 0.2488 c = 0.1652, 
-0.0299, e = 0.1591 
1.3208, b = 0.0702 c = 0.3450, 
0.2892, e -- 0.9338 
1.2572, b = 1.1432, c = 0.4056, 
0.2691, e = 0.5628 

-2 .847 656 3 a 
-2 .872 494 6 

-2 .872 539 8 

-2 .872  545 7 

-2 .872 598 1 

-2 .872 602 4 

-2 .872  604 3 

-2.872 605 2 

-2 .872 606 1 

a The original Kellner approximation 
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Fig. 1. Behaviors of  the best exponent 
functions ~(r) and v(r) for the Kellner 
and Hylleraas approximations of  the 
helium atom. For  the functional form, 
see Eqs. (4) and (9), and for the 
parameter values, see the last entry of  
Table 1 and Eq. (10) 

T h e  b e h a v i o r  o f  t h e  ( ( r )  f u n c t i o n ,  E q .  (4) ,  is  s h o w n  in  F i g .  1. W h e n  r 
i n c r e a s e s ,  ( ( r )  f i r s t  i n c r e a s e s ,  r e a c h e s  a m a x i m u m  v a l u e  o f  1 .6265 a t  r = 1 .597,  
a n d  t h e n  d e c r e a s e s .  T h e  v a l u e  o f  ( ( r )  is  c o n s i d e r a b l y  s m a l l e r  t h a n  t h e  o r i g i n a l  
K e l l n e r  v a l u e  1 .6875.  T o  e x p l a i n  t h e  n o n m o n o t o n i c  b e h a v i o r  o f  t h e  ~(r)  f u n c t i o n ,  
w e  h a v e  t o  c o n s i d e r  t w o  e f fec t s .  ( a )  T h e  S h i e l d i n g  e f f e c t  s u g g e s t s  t h a t  a n  i n n e r  
e l e c t r o n  fee l s  a l a r g e r  n u c l e a r  c h a r g e  in  a n  a v e r a g e  s e n s e  t h a n  a n  o u t e r  e l e c t r o n .  
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For the wave function (2), we have if(r2)> ~(rl) if rl < r2 and ~(r2)< if(r1) if 
rl > r2. Using the notation r> = max(r1, rz) and r< = min(rl, rz), we can unify 
the above inequalities as if(r> ) > ~(r<), which implies that ~(r) is a monotonically 
increasing function of r. This behavior applies to the small r region of Fig. 1. (b) 
The lnterelectronic repulsion effect means that the interelectronic repulsion is 
reduced if two electrons are separated. We can presume that the change in ~(r) 
is smaller than that in r. Then for rl ~> r2, Eq. (2) becomes ~ - exp[-~(r2)rl]. As 
rz increases, electron 1 favors a smaller exponent ~(r2) so that it can be away 
from electron 2. This effect is essentially equivalent to radial correlation and 
predicts a monotonically decreasing behavior for ~(r), as is observed in the large 
r region of Fig. 1. 

The actual behavior of the ~(r) function (Fig. 1) can be considered as a 
compromise of these two opposite effects, and hence the method of a variable 
exponent may take both the charge and radial correlations into account. In fact, 
the energy of -2.872 606 1 for the Kellner function with variable exponent 
compares with the energy of -2.875 661 3 for the Eckart function [4-6], which 
includes the radial correlation. The present energy approximately corresponds to 
that of Srivastava and Bhaduri [15], who modified the Kellner function by 
assigning different exponents to r> and r<. 

The improvement due to the variable exponent is also found for properties 
other than the energy. In Table 2, the results of this work for He are summarized 
and compared with the original Kellner and with exact [ 16] values. The quanti- 
ties CEN and CEe appearing in the table are, respectively, the electron-nuclear 

Table 2. Various electronic properties for He resulting from the application of the 
variable exponent method to the Kellner wave function. Values in parentheses are 
errors in percent relative to the exact value 

Property Kellner KeUner with Exact a 
variable exponent 

E --2.8476563 (+1.93) --2.8726061 (+1.07) --2.9037244 
V/T -2000 000 0 - 1.999 999 6 --2 

(ri -z) 5.695 31 ( -5 .35)  5.91242 ( -1 .74)  6.01741 
( r i  -1) 1.687 50 ( -0 .05)  1.686 74 ( -0 .09)  1.688 32 
(r~) 0.888 889 (--4.37) 0.920 933 (--0.92) 0.929 474 
( r~)  1.053 50 (-11.73)  1.16423 (--2.45) 1.19348 
( r  3) 1.560 74 (-20.69)  1.881 62 (--4.39) 1.967 94 
( r~)  2.774 64 (--30.17) 3.709 18 (--6.65) 3.973 53 
(6(r~)) 1.529 61 (-15.51)  1.711 67 ( -5 .45)  1.81043 
Cet v 1.687 50 (--15.63) 1.873 97 ( -6 .30)  2 

(r~ z) 1.89844 (+29.61) 1.701 07 (+16.13) 1.46477 
(ri~ l )  1.05469 (+11.51) 1.001 75 (+5.91) 0.945818 
(r12) 1.296 30 ( -8 .84)  1.361 71 ( -4 .24)  1.422 07 
(r~22 2.107 O0 ( -  16.27) 2.328 47 (--7.47) 2.516 44 
(r32) 4.096 94 (-22.82)  4.785 06 (--9.85) 5.308 O0 
(r~2) 9.248 82 (--28.75) 11.500 0 ( -- 11.41) 12.981 2 
(6(r12)) 0.191 202 (+79.78) 0.159651 (+50.12) 0.106352 
Cee 0 0 0.5 

a[16] 
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cusp cons tan t  defined [ 16] by 

CgN = -- ( 1/2) lim [o'(r)/o(r)], 
r---~ 0 

where 

Q(r) = ( 4 n ) - l  j dO J dr  2 ]~V(r, r2)l 2, 

Q'(r) = dQ(r) /dr, 

and  the electron-electron cusp cons tan t  defined [16] by 

CeE = +(1 /2 )  lim [h'(r~E)/h(r12)], 
r 1 2 ~ 0  

where 

(Sa) 

(5b) 

(5c) 

(6a) 

h(r12) =(4x) -1 f  dO12 f dR l~P(R + r12/2, R-r12/2)[ 2, (6b) 

h'(rl2) = dh(r12) /dr12, (6c) 

with r12 = r 1 - -  r 2 and  R = (rl + r2)/2. By the use of a variable exponent ,  the error 
for the one-electron moments  ( r T )  is reduced to approximately  one fifth. The 
behavior  of the wave funct ion is also improved in the vicinity of  the nucleus as 
can be seen from the values for (6(rl)) and  CEN. The improvement  is also 
remarkable  for the two-electron moments  ( r Y E ) ,  the error being halved by the 
variable exponent .  However,  the values for (6(r12)) and  CeE suggest that  the 
explicit inclusion of  an  r12 term is needed for an  accurate description of  the 
coalescent region of the two electrons. 

The method  of  a variable exponent  is also effective for other two-electron 
atoms. Table  3 summarizes the energetic results for several helium-like atoms. 
We find that  the energy lowering is relatively cons tan t  when the nuclear  charge 
Z is varied from 1 to 5. This is a reflection of  the fact that  the method  of  a 
variable exponent  mainly  reduces (1/rl2 > keeping (1 / r  1 ) almost  unchanged  (see 
Table  2). 

Table 3. Results of the variable exponent method applied to the Kellner approximation of 
several helium-like atoms 

Atom Optimum parameters a Energy Energy lowering b 

H-  a = 0.3748, b = 1.0054, c = 0.0661, -0.502 407 0 0.029 750 7 
d = 0.0506, e = 0.2832 

He a = 1.2572, b = 1.1432, c = 0.4056, -2.872 606 1 0.024 949 8 
d = 0.2691, e = 0.5628 

Li + a = 2.2107, b = 1.1985, c = 0.7662, -7.246 702 4 0.024 046 1 
d = 0.6329, e = 0.8266 

Be 2+ a = 3.1868, b = 1.2277, c = 1.1321, -13.621 318 6 0.023 662 3 
d = 1.1419, e = 1.0892 

B 3+ a =4.1717, b = 1.2464, c = 1.5020, -21.996 106 1 0.023 449 8 
d = 1.7965, e = 1.3503 

a See Eq. (4) for the ((r) function 
b Energy lowering from the original Kellner approximation 
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3. Eckart and Hylleraas functions with variable exponent 

We have also applied the variable exponent method to the Eckart wave function, 
Eq. (lb). Two modifications have been considered, 

~(rl ,  r2) = e x p [ -  ~t(r2)rl - fir2] + e x p [ -  flrl - ~(rl)r2],  (7a) 

~(rl ,  r2) = e x p [ -  ~(r2)r 1 -- f l(rl)r2] + exp[--fl(rz)r 1 -- ~(rl)r2] , (7b) 

which respectively associate the energy functionals E[~] and E[~,/~]. The same 
functional form as Eq. (4) has been assumed for the exponents, but the 
parameters (six for Eq. (7a) and ten for Eq. (7b)) have been optimized 
independently. For the helium atom, the resultant energies are -2.877 003 8 for 
Eq. (7a) and -2.877 842 9 for Eq. (7b). The energy improvements relative to the 
Eckart energy ( -2 .875661 3) are 0.001 3425 and 0.002 181 6, respectively, 
which is less than 9% of the improvement found for the Kellner function. Since 
the Eckart function already involves the radial correlation, the method of a 
variable exponent appears to give little improvement to this function. This result 
may be better understood by comparison with the radial limit energy [17] which 
has the value -2.879 027 8. The Kellner and Eckart wave function cannot 
exceed this limit even when variable exponents are introduced. Since the original 
Eckart function is much closer to the radial limit than the KeUner function, the 
improvement by the variable exponent is very limited for the Eckart function. 

For the Hylleraas function, Eq. (lc), however, the incorporation of variable 
exponent is again helpful. We modify Eq. (lc) as 

~-/(rl, r2) = (1 + xr12) exp[-y(r2)r I - y(r l)r2], (8) 

and optimize the exponent function 7(r) and the constant parameter x with 
respect to the energy E[y]. After the examination of various functions with five 
parameters, we have found that for He the function of Eq. (4) gives the best 
result, that is, 

y(r) = a + ln(b + cr + dr 2) exp(-er ) ,  (9) 

with 

a=1.3466,  b=1.3525,  c=0.4274,  d=0.2304,  e=0.4893,  (10) 

and x = 0.2944. The associated energy is -2.899 641 2 which is lower than the 
original Hylleraas energy ( - 2.891 120 7) by 0.008 520 5. This energy improvement 
is about 34% of that for the KeUner wave function, but is still significant compared 
to the result for the Eckart function. The exponent function y(r) is depicted in Fig. 
1 for the helium atom. ~(r) behaves similarly to ~(r) with a peak of 1.7888 at 
r = 1.477. Therefore, the discussion given for ~(r) applies to ~(r) as well. 

Table 4 presents the results of the variable exponent method for several one- 
and two-electron properties of the helium atom. We find that all the one-electron 
properties are improved by the method of a variable exponent, the error being 
reduced to approximately one third. A similar improvement is observed for the 
two-electron moments (r72), especially for n = 3 and 4. However, the electron-elec- 
tron cusp constant C e e  is worse than for the unmodified Hylleraas function. Since 
C e e  = x for the wave function (8), this corresponds to the reduction of the angular 
correlation effect upon the introduction of the variable exponent. The physical 
picture remains unclear for this result. 
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Table 4. Various electronic properties for He resulting from the application of the variable exponent 
method to the Hylleraas wave function. Values in parentheses are errors in percent relative to the 
exact value 

Property Hylleraas Hylleraas with Exact ~ 
variable exponent 

E -2.891 120 7 (+0.43) --2.899 641 2 (+0.14) --2.903 724 4 
V/T --2.000 000 0 --2.000 000 0 --2 

(r i  -2) 5.81363 (-3.39) 5.94283 (-1.24) 6.01741 
(r i  - t )  1.689 13 (+0.05) 1.68848 (+0.01) 1.688 32 
(r~) 0.896 846 (--3.51) 0.918 104 (-- 1.22) 0.929 472 
(r~) 1.076 79 (--9.78) 1.151 43 (-3.52) 1.193 48 
(r~) 1.61681 (--17.84) 1.835 31 (--6.74) 1.96794 
(r 4) 2,908 55 (--26.80) 3,547 87 (-- 10.71) 3.973 53 
(~(rl)) 1.640 98 (-9.36) 1.744 62 (-3.64) 1.810 43 
Ce~v 1.849 68 ( - 7.52) 1.932 04 ( - 3.40) 2 

(ri~ 2) 1.552 70 (+6.00) 1.496 97 (+2.20) 1.464 77 
(rG 1 ) 0.974 297 ( + 3.0) 0.954 619 (+0.93) 0.945 818 
(r12) 1.37243 (-3.49) 1.40670 (--1.08) 1A2207 
(r~2) 2.327 30 (--7.52) Z459 22 (--2.27) 2.516 44 
(r~32) 4.669 83 (--t2.02) 5.12601 (--3.43) 5.308 00 
(r~2) 10.784 4 (--  t6.92) 12.413 4 (--4.37) 12.981 2 
(,~(rl2)) 0.1.19 912 ( + 12.75) 0.I 15 787 (+8.87) 0.106 352 
C ~  0.365 796 (-26.84) 0.294440 ( -41. I1)  0.5 

a[16] 

Table 5, Results of the variable exponent method applied to the Hylleraas approximation of several 
helium-like atoms 

Atom Optimum parameters a Energy Energy lowering b 

H -  a =0.4634, b = 1.1290, c = 0.0971, -0.521 1663 0.0123858 
d -- 0.0461, e = 0.2661; x = 0.3396 

He a = 1.3466, b = 1.3525, c = 0.4274, -2.899 641 2 0.008 520 5 
d = 0.2304, e = 0.4893; r = 0.2944 

Li + a = 2.3260, b = 1.3971, c = 0.7270, -7.275 906 1 0~007 748 9 
d = 0.5151, e = 0,7217; x = 0.2780 

Be 2+ a = 3.3381, b = t.3860, c = 0.9823, - I3.651 496 8 0.007 444 7 
d = 0.8815, e = 0.9770; r = 0.2697 

B 3+ a = 4.3553, b = 1.3650, c = 1.2131,  -22.026 833 0 0.007 289 3 
d = 1.3286, e = 1.2464; x = 0.2648 

See Eq. (9) for the ?(r) function 
~' Energy lowering from the original Hylleraas approximation 

T h e  a p p l i c a t i o n  o f  t he  m e t h o d  t o  severa l  he l i um- l i ke  a t o m s  is s u m m a r i z e d  in  
T a b l e  5. T h e  ene rgy  l o w e r i n g  is a p p r o x i m a t e l y  i n d e p e n d e n t  o f  Z ,  s ince the  
v a r i a b l e  e x p o n e n t  m e t h o d  is m a i n l y  c o n c e r n e d  w i t h  the  e l e c t r o n  r e p u l s i o n  t e r m  
n o t  the  n u c l e a r  a t t r a c t i o n  t e r m  in t he  ene rgy  expec t a t ion .  T h e  energ ies  o f  th is  
w o r k  m a y  c o m p a r e  w i t h  t hose  due  t o  L ie  e t  al, [ 18] a n d  W u  [ 19]. T h e s e  a u t h o r s  
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in t roduced  radia l  cor re la t ion  into the Hyl le raas  wave funct ion by  the a d o p t i o n  
o f  different  exponents  for  r> and  r < .  

4. Conclusion 

F o r  two-e lec t ron  a toms,  we have s tudied the m e t h o d  o f  a var iable  exponent  
which t reats  the exponen t  o f  an e lect ron as an  explici t  funct ion  o f  the rad ia l  
coord ina te  o f  the o ther  electron.  App l i ca t ion  o f  this m e t h o d  to simple wave 
funct ions  has  shown tha t  the var iable  exponen t  gives a significant improvemen t  
when the rad ia l  cor re la t ion  is absent  in the or iginal  wave funct ion.  The  var ia t ion  
o f  the orb i ta l  exponent  has been found  to improve  bo th  the one- and  two- 
e lect ron proper t ies  except  for  the e lec t ron-e lec t ron  cusp cons tant ,  which seems 
to be connec ted  with the angu la r  cor re la t ion  ra ther  int imately .  
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